
Verifying Reasoner Correctness - A Justification
Based Method

Michael Lee, Nico Matentzoglu, Bijan Parsia, and Uli Sattler

The University of Manchester
Oxford Road, Manchester, M13 9PL, UK

{michael.lee-5,nicolas.matentzoglu,bijan.parsia,uli.sattler}@manchester.

ac.uk

Abstract. DL reasoners are complex pieces of software that work on
even more complex input which makes manual verification difficult. A
single ontology can have hundreds or thousands of classes and thus its
classification involve an unsurveyable number of subsumption tests. We
propose a new method for debugging classification across multiple rea-
soners which employs justifications generated from the set of entailments
that reasoners disagree upon to determine the cause of the disagreement.

Keywords: OWL, reasoning, debugging, justifications

1 Introduction
One of the major advantages of description logic reasoning are the sound and
complete decision procedures for the known fragments that underpin OWL 2
and its various profiles. However, implementing these procedures can be very
difficult due to inter-related optimisations and language specific limitations. It
is very likely that no implementation is actually correct for all legal inputs. We
have found that, in practice, reasoners do disagree on particular entailments
in the inferred class hierarchy. The complexity of the implementation makes a
formal verification of correctness, or even a generation of a non-arbitrary set of
automated unit tests, a near impossibility. Thus, it is difficult to resolve disputes.

Majority voting (MV) is a resolution method used in reasoner competitions
[4]. When a disagreement occurs over the inferred class hierarchy, the verdict of
the majority of reasoners is taken as truth. In case of a tie, the correct reasoner
is selected at random. This method has the key problem that it is not inherently
sensitive to the truth of the matter.

We present a novel semi-automated method to determine reasoner correctness
and narrow down potential causes of disagreement amongst a set of dissenting
reasoners in an efficient manner. We have evaluated our method using a corpus
of BioPortal ontologies.

2 The Method
Throughout, we denote R a description logic reasoner and E(O,R) the set of
atomic subsumptions found by R (the class hierarchy). J is a justification for

2 Michael Lee, Nico Matentzoglu, Bijan Parsia, and Uli Sattler

O |= η if J ⊆ O, J |= η and there is no J ′ ⊂ J such that J ′ |= η. We call a
tuple < O, η,J ,Rjust,R > a case, where Rjust is the reasoner that generated

the justification J for the entailment η and R is the reasoner that verified it.
Aside from these notions we assume a basic familiarity with description logics,
OWL and reasoners (see [1]).

The method: First, for a given ontology O, we ask reasoners R1, ...,Rm,
denoted R, to compute the E(O,Ri) for all Ri ∈ R. From these, we compute the
set of disagreed upon entailments, denoted D, by taking the union of all inferred
class hierarchies and removing the intersection of them,

⋃
E(O,Ri)\

⋂
E(O,Ri).

For each given entailment η ∈ D and everyRi ∈ R, we generate a sequence of
justifications J1,J2, ...Jn. Note that we attempt to generate justifications with
all reasoners, including the ones for which η 6∈ E(O,Ri).

For each justification Ji for η and each reasoner Ri ∈ R1 we check whether η
follows directly from the given justification (justification verification). We then
classify all cases according to one of four categories. (1) If Ri infers Ji |= η
and also initially considered η ∈ E(O,Ri), then we classify this behaviour as
inconspicuous. (2) If Ri infers Ji |= η and did not compute η as part of the
generated class hierarchy, then we consider Ri to have a simple bug. This could
happen because of a bug in the classification traversal algorithm or because of
faulty caching. (3) If Ri infers Ji 6|= η and η 6∈ E(O,Ri), then we assume that
either Ri or the reasoner that generated the justification contains a bug. These
cannot be automatically decided and we pass the justification to an expert. If
the expert determines Ji to be a justification for η, than Ri is considered buggy,
else the justification generating reasoner. (4) If Ri infers Ji 6|= η and initially
returned η ∈ E(O,Ri), then we consider this a serious error. Such cases also
require expert review. In our experiment, this case did not occur.

3 Experimental Design

Corpus, Reasoners and Machines: For the experiment the OWL API (v.
3.5.0) implementations [6] of four state of the art reasoners were used: FaCT++
1.6.3 [9], JFact 1.2.3, Pellet 2.3.1 [7] and HermiT 1.3.8 [3]. Aside from the fact
that these are popular, FaCT++ and JFact were also picked because of their
similarity, in an attempt to see if that similarity would produce any change to the
MV and the results from the method. Moreover, the number of reasoners were
set to 4 to provide enough variation between reasoners, but also to include the
possibility of deadlock between them. Our corpus is a snapshot of 339 BioPortal
ontologies (January 2015). All experiments are performed on a desktop computer
running 4 i5-3479 CPU at 3.20 GHz with a 64 bit Ubuntu 14.04.

Identifying potential ontologies: From our corpus, we filtered out those
ontologies that were merely RDFS or AL and the ones that do not fall under
OWL 2 DL. For the remaining 240, we computed the inferred class hierarchy
(1 hour timeout) for all four reasoners. We excluded a further 80 ontologies,
for which there was a timeout. The inferred hierarchies were normalised using

1 For reliability, we let reasoners verify their own justifications.

Verifying Reasoner Correctness - A Justification Based Method 3

default techniques for dealing with owl:Nothing, owl:Thing, atomic subsump-
tions and equivalent classes. For the 160 ontologies that remained, the reasoners
agreed in 155 cases and disagreed in 5.

Identifying and classifying problem cases: For the remaining 5 ontologies,
we generate and verify justifications according to the method described above.
We used the OWL Explanation Framework by Horridge [5]2 to generate explana-
tions for each η ∈ D. For performance reasons, we generate only one justification
per reasoner per entailment.

Each explanation is stored in .owl format allowing us to reload them to check
them against the reasoners and if needed, perform direct evaluation. For direct
evaluation cases, we generate a human readable version of the justification.

Testing hypotheses and generating patches: We test four hypotheses that
emerged from initial observations we will describe in more depth later: (1) The
reasoner swallows asserted axioms, (2) the reasoner does not correctly imple-
ment the data type map (3) interdependent justifications can be reduced to one
or more root justifications of an entailment that can be fixed by asserting the en-
tailment and (4) we can use the intersection of explanations to generate patches
that fix a large number of bugs.

4 Results
The 5 ontologies in our in-depth experiment were the Biological Collections On-
tology (BCO), the Gene Regulation Ontology (GRO), the Sysmo Jerm Ontology
of Systems Biology for Micro Organism (JERM), the Clusters of Orthologous
Groups Cog Analysis Ontology (CAO) and the Cell Culture Ontology (CCONT).

Across these 5 ontologies there was one instance of total disagreement and 4
partial majorities. With respect to the total disagreement, it was found that 3
out of the 4 reasoners verified a justification for an entailment missing from their
class hierarchy. HermiT, at least for our small set, did not exhibit any buggy
behaviour. Table 1 shows for each ontology and reasoner R and ontology O:

– Was the reasoner part of the majority (MAJ) according to the MV method?
– Was there total disagreement (DIS) or total agreement (AGG) with respect

to this ontology between all reasoners?
– If there was a case that was unclear involving R (TIE), was the reasoner

generating the justification (TIE (J)) or verifying it (TIE (R))?
– Was there one or more case for R which implicated a bug (BUG)?
– Does the verdict differ from simple majority voting (dff2MV)?

As we can see, only BCO produced at least one unclear case. According to
MV, FaCT and HermiT’s inferred hierarchy would be in the majority. However
Pellet produced TIE cases, which meant that we needed further analysis to de-
termine which entailment was correct. Expert review showed that Pellet in fact
failed to entail something correctly, as detailed in Section 4.1. In the case of the
CAO ontology (total disagreement), we could identify clear BUG cases for all

2 https://github.com/matthewhorridge/owlexplanation

4 Michael Lee, Nico Matentzoglu, Bijan Parsia, and Uli Sattler

Table 1. Reasoner verdicts

O R MAJ DIS AGG TIE (J) TIE (R) BUG diff2MV

BCO jfact 0 0 0 1 0 0 diff
BCO fact 1 0 0 1 0 0 same
BCO pellet 0 0 0 0 1 0 diff
BCO hermit 1 0 0 1 0 0 same

GRO jfact 0 0 0 1 0 1 same
GRO fact 0 0 0 1 0 1 same
GRO pellet 1 0 0 0 1 0 same
GRO hermit 1 0 0 0 1 0 same

JERM jfact 1 0 0 0 0 0 same
JERM fact 0 0 0 0 0 1 same
JERM pellet 1 0 0 0 0 0 same
JERM hermit 1 0 0 0 0 0 same

CAO jfact 0 1 0 0 0 1 same
CAO fact 0 1 0 0 0 1 same
CAO pellet 0 1 0 0 0 1 same
CAO hermit 0 1 0 0 0 0 diff

CCONT jfact 1 0 0 0 0 0 same
CCONT fact 0 0 0 0 0 1 same
CCONT pellet 1 0 0 0 0 0 same
CCONT hermit 1 0 0 0 0 0 same

reasoners except HermiT. A MV based technique would chose the victor ran-
domly, which disadvantages HermiT. Reasoning over the other three ontologies
each produced a majority that we could successfully provide further confidence
for. For each, any dissenting reasoner was found to have produced a BUG case
and hence missed an entailment in its overall class hierarchy.

4.1 Analysis of Errors and Method for Patching

Of the 5336 cases generated by our method, 3718 were classed as inconspicuous,
1590 were classed as BUG and 28 as TIE. A further diagnostic investigation was
carried out on the 1618 error cases. This diagnosis found four different types
of problem for the reasoners. These are, (1) removal of asserted axioms from
the ontology by FaCT++ and JFact, (2) a difficulty for FaCT++ and JFact
to resolve type information, (3) Pellet being unable to determine a particular
subsumption relation and (4) a case of Pellet “missing” a set of strong struc-
turally similar justifications. For each case we used a different method to provide
a diagnosis of the problem or a minimal patch to the ontology that the devel-
oper could then use to test against. This was a prudent measure, given the large
number of cases. These techniques are naturally dependent on the nature of the
errors produced. Ideally, we would like to provide developers a tuple of ontology,
entailment, justification and patch that illustrate the faulty behaviour.

Axiom swallowing: FaCT++, JFact In analysis of those cases classed as
BUG, it was discovered that 116 of the justifications were of cardinality 1. Flag-

Verifying Reasoner Correctness - A Justification Based Method 5

ging for entailments being contained in the ontology showed that the subsump-
tion axioms were directly asserted in the ontologies. All such cases were instances
of FaCT++ or JFact verifying a justification for an entailment missing in it’s
inferred class hierarchy. Specifically 100 of these cases were produced by FaCT,
16 by JFact. All JFact cases were “replicated” by FaCT++. These 116 cases are
28 particular axioms being missed by FaCT++ and JFact, with JFact missing
7.

This suggests a pre-processing bug on the part of FaCT++ and JFact. Of
the bug cases, 1440 cases (approximately 90 %) rely upon these 28 axioms. This
suggests that the vast majority of our BUG cases are down to this error.

Further support for this hypothesis comes from analysis of the overall cases.
400 out of the total 5336 cases had justifications of size 1. 4640 require these
400 cases to hold in the sample overall. This suggests that most of work was
generated by FaCT++ and JFact failing to entail the result.

Data Type errors: FaCT++, JFact From the TIE cases, we found two
justifications produced by FaCT and JFact that asserted a particular class was
unsatisfiable. Direct examination showed that the class Decrease was classified
as unsatisfiable because of the specifications of the data type.

Decrease had for its data property polarity a specified datatype of rdf:PlainLiteral.
This was distinct from the specified range of the polarity datatype, which were
all xs:string. The actual possible value was correct, but the types differed. Ac-
cording to W3C specifications on plain literals, such a substitution is allowed: rdf
plain literals should be interpreted as xs:strings [10]. Consequently, “negative”
cast as plainLiteral would be accepted as a string. This suggested that JFact and
FaCT++ had problems with particular data types. We verified this fact with a
pair of minimal test cases.

Wrongly Missing Entailment: Pellet The 24 additional cases classed as TIE
were all generated by Pellet asserting that a particular entailment did not follow
from a given justification. These cases could be collapsed into 8 unique justifica-
tions (in-between reasoner redundancy). Interestingly, each of these justifications
took on a similar structural form.

All 8 justifications were verified as correct for their entailment (expert re-
view). Because of their structural similarities and because upon examination
we discovered them to have ontology classes on both the left and right hand
side of the entailment, we attempted to patch the problem by taking the most
general left hand side class name and the most specific right hand side class
names in terms of subsumption and inserting that into the ontology. Starting
with the most general on the left hand side and most specific on the right
means that we are assured to affect every entailment. In this case inserting
IAO 0000109 v BFO 0000040 into the ontology allowed Pellet to infer the cor-
rect class hierarchy and eliminate all problematic cases from the ontology.

Classification bugs: Pellet All BUG cases generated by Pellet were found to
have justifications of size 5 and to have entailments of the formA v CAO 0000323

6 Michael Lee, Nico Matentzoglu, Bijan Parsia, and Uli Sattler

(the RHS is a named class in the CAO). These similarities made us suspect that
the justifications might be structurally similar and possibly share axioms.

Checking the intersection of all the justifications produced three shared ax-
ioms, Inverse(CAO 0000052, CAO 0000059), CAO 0000055 v ∃CAO 0000059.CAO 0000323,
CAO 0000323 ≡ CAO 0000048 u ∀CAO 0000052.CAO 0000171.

We suspected that one of these axioms caused Pellet the difficulty. We sin-
gled out the problematic axiom with the following procedure: for a given set of
justifications J1, ...Jn take S =

⋂
i Ji. For each α ∈ S and for each reasoner

Rj infer the class hierarchy from O \ α. If no bugs occur then stop. We call the
removal of α a patch for the problem case.

The problematic axiom was singled out as CAO 0000055 v ∃CAO 0000059.CAO 0000323.
This provided a minimal patch that a developer can use to understand the prob-
lematic reasoner behaviour.

5 Discussion
One important consequence of our justification based method is its implications
for majority voting. In two of the cases we found reasons to suspect that the
majority (or lack of) might lead to wrong reasoners being classified as “correct”.
Moreover, we could produce information to justify the choices picked through
our method and those cases where our method agreed with MV. The evidence
shows a clear difference between the method stipulated and MV.

A general shortcoming of this system is that it does not catch all errors
generated by the reasoners in particular those where the reasoners are all in
agreement (which is the majority of the time). A more artificial problem is our
restriction to a single justification per reasoner entailment pair. This problem is
avoidable with greater computational resources.

To our knowledge, there is little similar work. The JustBench benchmarking
methodology [2], verifies the justifications being used as benchmarks by cross
checking them against all reasoners (this also emerges naturally when bench-
marking). Similar work for automated reasoners has been performed with re-
spect to queries [8]. The authors create test units (A-Boxes representations of
the query) to form a test base. For certain benchmark ontologies that are used
to assess reasoners, this provides a metric that evaluates the completeness of the
reasoners. Importantly they also stress the need for such methods to be invariant
or independent of the ontology being tested against.

6 Conclusions and Future Work
In this paper, we have presented a justification based method to reliably identify
bugs in the classification algorithm of OWL reasoners. Furthermore, our method
allows us to narrow down possible sources of bugs, providing a starting point for
reasoner debugging. Ideally, we would like to ensure that reasoners are as correct
as possible for key reasoning services such as classification to avoid confusions
caused by wrongly missing entailments.

In the future, we would like to provide the method as a web service. Devel-
opers would be able to test their reasoners against a set of standard reasoners
and then obtain cases that pinpoint potential bugs consisting of justifications,
missing entailments and ontology patches (that make the problem disappear).

Verifying Reasoner Correctness - A Justification Based Method 7

References

1. Edited by Baader F., Calavenese D., McGuinness, D.L., Nardi, D., Patel-Schneider,
P.F.: The Description Logic Handbook 2nd Edition Cambridge University Press
(2007)

2. Bail, S., Parsia, B. Sattler,U.: JustBench: A Framework for OWL Benchmarking.
In: The Semantic Web ISWC 2010, pp. 32–47. Springer (2010)

3. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: An OWL 2
Reasoner,. In: J. Autom. Reasoning, Volume 53, pp.245–269, (2014). http://dx.
doi.org/10.1007/s10817-014-9305-1.

4. Gonsalves, R.S., Bail, S., Jimenez-Ruiz, E., Matentzoglu, N., Parsia, B., Glimm,
B., Kazakov, Y.: OWL Reasoner Evaluation (ORE) Workshop 2013 Results: Short
Report. CEUR Workshop Proceedings, ORE (2013)

5. Horridge, M.: Justification Based Explaination in Ontologies. Thesis, University of
Manchester (2011)

6. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies. In:
Semantic Web, Volume 2, Number 1, pp.11–21 (2011). http://dx.doi.org/10.

3233/SW-2011-0025

7. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A. Katz, Y.: Pellet: A practical OWL-
DL reasoner. In: J. Web. Sem., Volume 5, Number 2, pp.51–53, (2007) http://dx.

doi.org/10.1016/j.websem.2007.03.004,
8. Stoilos, G., Grau, B.C., Horrocks, I.: How Incomplete is Your Semantic Reasoner?

Systematic Analysis of the Completeness of Query Answering System. In: AAAI
(2010)

9. Tsarkov, D. and Horrocks, I.: FaCT++ Description Logic Reasoner. In: IJCAR
pp.292-297 (2006) http://dx.doi.org/10.1007/11814771_26

10. W3C Recommendations RDF Semantics, http://www.w3.org/TR/2004/

REC-rdf-mt-20040210/#DtypeRules

