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Abstract. Recently, modular techniques have been employed for op-
timising Description Logic reasoning, specifically to enable incremental
reasoning and improve overall classification time. Properties of locality-
based modules strongly suggest that classifying a module of an ontology
should be significantly easier than reasoning in the whole ontology, either
due to subsumption test avoidance (traversal) or reduction of subsump-
tion test time. However, we observed in previous work that neither it is
generally true that modular reasoning techniques have a reliable positive
effect, nor even that the classification time of a module is less than or
equal to the classification time of the whole ontology. One possible ex-
planation for the latter could be that counter-productive optimisations
are triggered within the reasoner when dealing with the sub-module, and
thus individual subsumption tests get harder when parts of the ontology
are missing. The goal of this paper is to understanding the contribution
of subsumption tests to the hardness of classification. The contribution
is twofold: (1) We analyse the impact of subsumption test hardness on
DL classification by analysing a well known corpus of ontologies, and (2)
we present a novel approach based on modularity to robustly detecting
subsumption tests that are too hard.
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1 Introduction

Reasoning in popular, very expressive Description Logics (DL) is very difficult
(e.g., SROIQ is N2Exptime-complete) [12]. Perhaps surprisingly, modern rea-
soning systems suitable for the entirety of OWL 2 DL (essentially a notational
variant of SROIQ) such as FaCT++ [20], Pellet [18], HermiT [5] and recently
Konclude [19] generally perform well against real ontologies. However, due to the
poor performance in some (often important) cases, the quest for optimisations
is ongoing. The need to empirically validate such optimisations stems from the
sheer complexity of reasoner architectures. Worst case complexity analysis and
its variants do not account for the high variability of classification times of real
ontologies. Modern reasoning systems have to accommodate multiple reasoning
services and also tend to implement a wide range of optimisation techniques that
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might affect each other. Various sources of non-determinism, mainly traversal
(subsumption test order) and or-branch exploration of a tableau further com-
plicate the situation. Statistical methods such as linear regression [16] tend to
be only precise for trivial cases, and are limited in their explanatory richness.
Currently, principled benchmarking provides the only way to creating detailed
characterisations of DL reasoning performance.

Using locality-based modules to optimise Description Logic classification ex-
perienced a resurgence in recent years [15, 21]. Intuitively, breaking the input
problem into smaller pieces, reasoning over those pieces separately, then recom-
bining the results is appealing. From a naive perspective, it seems obvious that
a straightforward way of dealing with high worst case complexity is to keep
the inputs very small. Furthermore, if there are especially difficult parts of the
ontology, perhaps they can be isolated to reduce their impact. In practice how-
ever, modular reasoning techniques do not always improve the performance of
classification [6]. In fact, they can drastically impair performance, making it a
hit and miss game to chose between a modular reasoner (e.g. MORe-HermiT,
Chainsaw-JFact) and its monolithic counterpart (e.g. HermiT, JFact). These
cases can often be due to various kinds of overhead induced by modular reason-
ers (e. g., extracting the modules might take longer than classifying the whole)
or redundancy introduced by the mostly unavoidable and often significant over-
lap between the various modules extracted. In a preliminary set of experiments
[13] we observed a curious effect: Not only are there cases where there are in-
dividual subsumption tests that can be, often significantly, harder in a module
extracted by a modular reasoner than in the whole ontology, but we could ob-
serve that there are occasionally modules whose classification time exceeds that
of the entire ontology O it was extracted from.

The goal of this paper is to understanding the contribution of subsump-
tion tests to the hardness of classification. The contribution is twofold: (1)
We analyse the impact of subsumption test hardness on DL classification by
characterising a well known corpus of ontologies, and (2) we present a novel
approach based on modularity to robustly detecting subsumption tests that are
potentially too hard. As a result, we re-confirm the almost 20 years old results by
Horrocks [11] that subsumption tests are generally rather easy. We also isolate
counter-intuitive instances that, however, are often likely to be the consequence
of the surprising degree of observed stochasticity in the classification process.

2 Background

Understanding the experimental design and methodology presented here does
not require more than a cursory understanding of the syntax, semantics, and
proof theories implemented. A reasoner is a program that offers key logical
services usually involving deriving entailments in an ontology. The most promi-
nent families of reasoning algorithms for description logics are tableau (incl.
hyper-tableau) and consequence-based. In our work, we are mainly concerned
with tableau algorithms. Logical services are, among others, classification,
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consistency checking, simple entailment checking, explanations and instance re-
alisation. The reasoners under investigations in this paper are designed to im-
plement key reasoning services for the Web Ontology Language (OWL), most
importantly classification and consistency checking. Given an ontology (a set of

axioms) O, the signature of an ontology Õ is the set of non-predefined entities
(classes, individuals, object properties, data properties) appearing in the axioms
in O. We use CT (O) (classification time) and CT (M) respectively to denote
the time of computing the set of atomic subsumptions (i.e., statements of the
form A v B where A and B are predicates in the signature) or classification of
O. For brevity, we refer to overall classification time as OCT and subsumption
test time STT.

While subsumption testing, and therefore classification, is in theory intractable,
highly optimised reasoners do fairly well in practice. The observed efficiency de-
spite the worst case complexity is in principle down to four factors. (1) Real on-
tologies are bounded in size and expressivity. That means that the theoretically
hard cases might never or rarely occur. (2) Many ontologies fall into tractable
fragments of OWL, and can be classified using efficient polynomial algorithms
such as the ones from the family of consequence-based algorithms. (3) The last 20
years brought a plethora of different optimisations to make satisfiability checks
(and therefore subsumption tests) easier [11, 3]. (4) Very efficient algorithms
were developed to avoid the vast majority of subsumption tests altogether [1, 4,
17].

The particular flavour of “logically respectable” modules we use are based
on syntactic locality [10]. Current modular classification approaches use so-called
⊥-modules (bottom-modules) which have a number of desirable properties: (1)
Being based on syntactic locality, they are relatively cheap to extract and are
reasonably compact and exact. (2) If O |= A v C then for any given ⊥-module

M⊥, of O where A ∈ M̃⊥, M⊥ |= A @ C (were C is an arbitrary expression
over the signature of O). Thus, ⊥-modules are classification complete for their
signature with respect to their parent ontology. Hereafter, we will useM to refer
to a syntactic locality based ⊥-module.

Very recently, reasoner developers have started to utilise modularity for
classification. They either are (1) using modules for incremental reasoning [9]
or (2) using modules to improve classification time [15, 21].

Most OWL Reasoner benchmarks, especially those focused on classification,
determine how long it takes the reasoner to execute the service for a given input.
Few benchmarks distinguish between different stages outside the actual reason-
ing. We propose a model of monolithic reasoning that distinguishes the following
five stages for the process of classification: (1) Preprocessing, (2) initial consis-
tency check, (3) pre-traversal optimisations, (4) traversal, (5) postprocessing.
The reasoning systems we analysed in our framework all follow that model, and
we believe that most classifiers do. The second core aspect of the framework is
the recording of subsumption tests. We restrict ourselves to calls to the Tableau
implementation of the reasoner, and ignore subsumptions determined by other
means (e.g. nested consequence-based procedures). From an implementation per-
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spective, the framework currently has to be hard wired into the code (a single
static Java class). While we did this ourselves for the Java-based systems in our
study, we collaborated with the developer of FaCT++ in order to extend the
interface to merely flushing out textual information that we then later parsed
back into our analysis framework. All measurements reflect wall clock time, to
avoid the confusion provided by multi-threaded implementations. We also be-
lieve that wall clock time more realistically reflects what end-users are interested
in, despite being a considerable source of experimental error.

3 Related Work

Attempts to understand DL reasoning performance are, up until today, rarely
systematic or comprehensive. Recently, the ORE reasoner competition tries to
establish the methodological foundations for more reliable comparisons [6] be-
tween different reasoners and across a range of different reasoning services. OWL
Reasoner benchmarks have been conducted for varying purposes, for example
(and most prominently) guiding end-users for selecting appropriate reasoners
for their problem [2, 6] or understanding reasoning or the state of reasoning in
general [7]. Dentler et al. [2] conduct a principled investigation to identify suit-
able criteria for choosing an appropriate reasoner for EL ontologies. In our work,
we are interested in mapping out subsumption test hardness during full classi-
fication across reasoner-ontology pairs (phenomenological characterisation) and
the potential of modularity to pinpoint counter-intuitive cases (i.e. harder tests
in a sub-module). Most benchmarks conduct an only semi-principled dataset
selection: Even carefully executed benchmarks such as Dentler et al. [2] usually
cherry pick a set of somehow relevant ontologies. Few works sample from existing
corpora or the web, and only Gonçalves et al. [7], to the best of our knowledge,
deal with corpora larger than 500 ontologies. In practice, the current de facto
gold-standard corpus for ontology experimentation is BioPortal [14], which also
provides a well designed infrastructure to obtain an interesting range of biomedi-
cal ontologies programatically. We are using a snapshot of BioPortal in this work.
As far as we know, no benchmark to date has investigated subsumption testing
during classification across reasoners in a principled manner. However, various
benchmarks have investigated the effect of certain optimisations on subsump-
tion test avoidance [4]. While the literature on classification optimisation and
reasoning is vast, little progress has been made in understanding classification
hardness of real ontologies, both empirically and formally.

4 Subsumption Test Hardness

Before we explain our model of subsumption test hardness, we first provide some
operational definitions. The phenomenon under investigation is subsumption
test hardness in the context of classification. A subsumption test is a
question asked by the reasoner to determine whether A v B. The subsumption
test hardness is the time it takes to compute the answer, operationalised as
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wall-clock time. In this work the answer to a test is either yes or no. Note
however, that for any implementation (1) more than just a binary answer will
be provided (i.e., cached models, derived subsumptions) and (2) no guarantee
is given that the answer is correct (accidental unsoundness). “In the context of
classification” means that we are not exploring individual “cold” tests, i.e. letting
the reasoner compute whether A v B for any A,B from outside the classification
process, because we want to understand the contribution of subsumption testing
to classification as a whole, with all the optimisations involved.

Our model of subsumption test hardness with respect to sub-modules
is based on the following intuition: Given a positive subsumption test ST , it
should be the case that for every two modules M1,M2 with M1 ⊂ M2 ⊂ O
in which the subsumption test is triggered, the hardness of ST always stays
the same. The reason for that are module properties: every justification for an
entailment is part of every module that entails it. Thus, every way that the
entailment holds is contained in the module, no “new” information about the
entailment exists in the rest of the ontology. Intuitively, additional “stuff” can
make it harder to figure out the entailment, but not make it easier. This makes
this metric a possible indicator of counter-productive optimisations: If we find
that STM2

is harder than STM1
, we might conclude that the reasoner is doing

some unnecessary extra work in M2; if STM1
is harder than STM2

, there is
a possibility that a counter-productive optimisation may have been triggered.
Only the second case is truly pathological: A test should never get harder when
irrelevant axioms are removed from the ontology. The first case might simply
occur because if M grows, it gets harder to identify the irrelevant axioms. One
possibility to explain both cases may be the inherent stochasticity of classifica-
tion as implemented by current OWL Reasoners. For example, a random factor
might (for example by changing the test order) simply shift the load of ST inM1

to another subsumption test ST 2 that consecutively makes ST easier. Another
reason for a test becoming easier in a sub-module might be the exploitation of
partial results from negative tests (e.g. caching).

Our empirical investigation of subsumption tests has two parts: (A) a broad
characterisation of the landscape of subsumption testing and (B) an in-depth
characterisation of non-trivial subsumption tests. We treat a test as non-trivial
if it takes longer than 100 ms . The first part A will attempt to answer the
following questions: What is the impact of subsumption testing on reasoning
performance in general (RQ1)? How many tests are positive or negative and
how do they differ in hardness (RQ2)? How hard are real tests actually (RQ3)?
We address RQ1 by breaking down how many ontologies require the reasoner to
trigger tests, and provide an analysis of the impact of these tests on the overall
classification time. The impact is quantified as the contribution to the overall
classification time in percent. RQ2 will be answered statistically by observing
the distribution of positive and negative tests across the hardness bins. RQ3 will
be addressed by binning subsumption tests and ontologies according to their
hardness as described in the end of this chapter, broken down by reasoner. The
motivation for this first part is twofold: (1) we want to get a feeling for the
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hardness of real subsumption tests during classification in the wild, (2) we want
to identify relevant cases for the in-depth characterisation of non-trivial cases
(B).

Part B serves as an in-depth characterisation that attempts to address ques-
tions related to the general stability of the measurements (intra-module) and
the effect of modularity (inter-module). The following questions will be an-
swered from the intra-module perspective. Is subsumption test hardness a
stable phenomenon (RQ4)? This is important in order to judge how reliably we
can trace a single subsumption test through different sub-modules of an ontology,
and may also give a warning sign for triggered non-determinism, for example in
the case that a test appears or disappears given a particular ontology-reasoner
pair across runs. We will address this problem mainly by looking at the coeffi-
cient of variation (COV) of subsumption test hardness, a standardized measure
of dispersion of a distribution defined as the ratio of the standard deviation to
the mean, across different runs. What are the reasons for instability (RQ5)?
We will not conclusively try to answer this problem, but we will collect some
evidence for stochasicity by looking at intra-module variation of test counts, a
strong indicator of non-determinism. Evidence against measurement error will
mainly come from the mean coefficient of variation of test hardness across all
the reasoner - module pairs.

The next questions will be asked from the inter-module perspective. Does
modularity change the hardness of tests (RQ6)? In order to answer this question,
we will classify tests by analysing how modularity effects their hardness. This
happens as follows: We identify all super and submodule combinationsM1,M2

as described earlier. For each test triggered in bothM1 andM2, we determine:
(1) was the effect positive on average (across runs), (2) what was the magnitude
of the effect and (3) was the effect stable? We define stability of an effect as
follows: given a subsumption test ST that occurs in two modulesM1,M2 with
M1 ⊂M2, and two sets of measurements MEAS(STM1) and MEAS(STM2)
(a) measurements ME ∈MEAS(STM1) are either all harder or all easier than
measurements ME ∈MEAS(STM2

) (strong stability) or (b) the overlap of the
ranges of MEAS(STM1

) and MEAS(STM2
) is less than 10% of the range of

MEAS(STM1
) uMEAS(STM1

).
For improved readability of results, we group subsumption test hardness into

the following bins: Very Hard (more than 100 seconds), Hard (>10 sec), Medium
Hard (>1 sec), Medium (>100 ms), Medium Easy (>10 ms), Easy (>1 ms), Very
Easy (>100 µs.), Trivial (<100 µs).

5 Experimental Design

We have conducted three separate experiments, each addressing a distinct part
of our overall problem: (1) The characterisation of subsumption test hardness in
the context of classification across a well known corpus, (2) the in-depth analysis
of a subset of cases for variability and counter-intuitive cases and (3) the causal
investigation into pathological cases.
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5.1 Corpus, Reasoners, and Machines

We conducted our study on a corpus of 339 OWL API (3.5.0)-parsable BioPor-
tal ontologies, obtained through the BioPortal REST Services1 (January 2015
snaphshot). All ontologies were serialised into OWL/XML, with merged imports
closure. A minimum amount of repair (injecting missing declarations, dropping
empty n-ary axioms, etc.) was applied to ensure that trivial violations do not
impair DLness. An overview of the corpus features can be seen in chart 1.
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Fig. 1. Corpus Metadata. Top: histogram of axiom counts (y-axis: ontology count, x-
axis: axiom count. Bottom: y-axis: number of ontologies exhibiting respective feature.)

For all our experiments, we use four state-of-art OWL reasoners that imple-
ment the OWL API OWLReasoner interface: HermiT 1.3.8, Pellet 2.3.1, JFact
1.2.3 and FaCT++ 1.6.3. All four are among the most heavily used reasoners for
OWL 2 DL. The reasoners have been modified for the benchmark in the following
way: (1) A timestamp is recorded when a stage according to our reasoner stage
model is entered; (2) When a subsumption test is conducted, the start and end
timestamps, the sub and super class under consideration and the result of the
test are recorded. The recorder is a lightweight static Java class. In order to mit-
igate performance impairments through memory overhead, we use a buffered file
writer for the subsumption test data and record the overhead writing to it. While
we can use this approach to compare results for each reasoner, interpretation of
comparisons between reasoners might be misleading due to implementational
details. For example, methods that test for subsumption and ultimately satisfi-
ability may be heavily nested. In order to chose where exactly to measure, we
either asked the developers directly (JFact, FaCT++) or were guided by bench-
marking code already present (progress monitors for debugging, HermiT and
Pellet). Because we are interested in real life behaviour, we allowed the reasoner
to fall into states like the deterministic part of HermiT for Horn-SHIQ or Pellets
internal EL-Reasoner. That said, we cannot claim to measure all subsumption
tests a reasoner does, because subsumptions are determined during consequence-
based approaches or HermiT’s deterministic reasoning as well. We can, however,
establish a lower bound and are confident that we capture the vast majority of

1 http://data.bioontology.org/documentation
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the hard tests, because the sum of test times occasionally account for almost
100% of the OCT for all reasoners.

A set of four equal-spec Mac Minis with Mac OS X Lion 10 (64 bit), 16 GB
RAM and 2.7 GHz Intel Core i764-bit was used for the benchmarking. Every
single classification was done in a separate isolated virtual machine (Java 7,
-Xms2G, -Xmx12G). In order to reduce potential bias induced by run order
(unaccounted for background processes kicking in, runtime optimisations), we
fully randomise the run order and evenly distribute the experiment run jobs
across the four machines.

5.2 Experimental Pipeline

For the first experiment we execute a single run of all reasoners across the entire
corpus (4 reasoners on 339 ontologies), with a timeout of 60 minutes per run. Due
to technical details, the timeout is a lower bound and might not be triggered until
some minutes later. Note that we include every ontology in the corpus, including
the ones not strictly in OWL DL (53). The reason for that is that these ontologies
do, if we like it or not, form part of the landscape, and reasoners are used on
them. The main sources of violations are uses of reserved vocabulary (37% of all
violations across the corpus), illegal punning (32%) and uses of datatypes not
on the OWL 2 datatype map (11%).

For the second experiment, we select a set of reasoner-ontology pairs for
which, according to the results of experiment 1, at least one test was measured
that was harder than 100 milliseconds. Because of the various claims we have
with respect to modules, we also excluded ontologies that do not fall under
OWL 2 DL. Runtime limitations (both for the data gathering and the analysis)
forced us to focused on those ontologies with less than 5200 tests in total (5000
would have left the sample without a case for FaCT++). For this experiment, we
first obtain random cumulative subsets from the ontologies in our narrowed down
sample, similar to Gonçalvez et al. [8], with 16 slices. In a nutshell, given the
set of logical axioms the ontologies is comprised of, we obtain a random 1/16th
of the axioms, serialise this subset, add another randomly drawn 1/16th from
the remaining axioms to the first, serialise them together, and then iteratively
grow each consecutive subset until the final set is the whole ontology. From the
signature of the each subset sampled, we obtain the ⊥-locality module using
the OWL API module extractor. Module properties ensure that, given subset
S1 ⊂ S2, MS1 ⊂MS2. The module of 16/16th, MÕ, corresponds to the whole
ontology. We call this nested set of modules a path. Note that the modules are
usually considerably larger than their respective subsets, which will give us a
good sample of relatively large modules with hopefully hard subsumption tests.
Each of the modules obtained is classified three times (i.e., three independent
runs) by each reasoner. Given a path M1 ⊂M2 ⊂Mn, we call P the set of all
pairs Mi,Mj with i<j.
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6 Results

Supporting materials, data sets and scripts can be found online2. Percentages in
this section are subject to appropriate rounding.

6.1 Subsumption Test Landscape

Out of the 1356 attempted classification runs (4 reasoners and 339 ontologies),
1136 (85%) completed successfully. 322 ontologies were dealt with by at least one
reasoner (95%) within the 60 minute timeout. Reasons for failure include hitting
the timeout, unsupported datatypes (FaCT++), and lack of DLness (mainly
HermiT). From the 322 ontologies successfully processed, 186 did not have any
subsumption tests measured by any of the three reasoners. By reasoner, FaCT++
did not test in 177 cases, HermiT in 189, JFact in 191 and Pellet did not fire a
subsumption test during 218 successful classifications. For the remaining 136, at
least one reasoner conducted a subsumption test as described in Section 5.1. In
table 6.1 we can see that ontologies with tests are generally considerably harder
(consider mean and third quartile).

Count Min. 1st Qu. Median Mean 3rd Qu. Max.

O with tests 136 0.051 0.548 1.503 97.490 4.329 7,575.000
O without tests 186 0.046 0.211 0.418 40.140 1.069 8,014.000

0, Fact++[EXP] 0, HermiT[EXP] 0, JFact[EXP] 0, Pellet[EXP]

1, Fact++[EXP] 1, HermiT[EXP] 1, JFact[EXP] 1, Pellet[EXP]
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Fig. 2. Counts of subsumption tests for each hardness bin by reasoner (log scale).

In Figure 4 we can observe the impact of subsumption tests on the overall
classification time (OCT), broken down by reasoner. One interesting observation
is that most positive tests are of only trivial hardness, while negative tests are
generally harder. The OCT includes all stages described in section 2. While
subsumption testing dominates the OCT only in a few cases, it occasionally
accounts for more than 80%. Very rarely we can observe a single test accounting
for more then 10% of the OCT. The maximum impact for a single test by Pellet
is 11.3%, HermiT 23.1%, JFact 24.8% and FaCT++ 9.2%. The distribution of
subsumption test hardness across all runs according to our hardness scale (Sec. 4)
is shown in Figure 2 (left). Figure 3 shows how many ontologies contain tests

2 http://owl.cs.manchester.ac.uk/publications/supporting-material/

subtest-hardness-in-classification/
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of a particular hardness. The most important observation to make here is the
rarity of ontologies with tests that take longer than a second (medium hard bin
and above).
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Fig. 3. Ontologies in each hardness category. The x-axis represents the number of
ontology in each bin. Bin classification according to hardest subsumption test.

Min. 1st Qu. Median Mean 3rd Qu. Max. Pos Neg

FaCT++ 2 46 71 7,519 111 2,352,000 24,286 905,011
HermiT 48 418 481 17,390 570 198,900,000 1911 88387
JFact 1 48 88 1127 169 45,920,000 28103 1100972
Pellet 23 175 246 825 365 35,060,000 634 522592
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Fig. 4. Impact of SST on classification time by reasoner in %. Low line: hardest indi-
vidual test; high line: sum of all tests; x-axis: ontologies (by index).

6.2 In-depth Characterisation

From the previous experiment, according to the process detailed in Section 5.2,
1 ontology was selected for FaCT++, 10 for HermiT, 1 for JFact and 4 for
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Pellet. The full ontologies have OCT’s ranging from 7.31 seconds to 1211.00
seconds (median: 95.87, mean: 179.50). Out of the 768 (16 modules per on-
tology, 3 runs per module) attempted classifications (timeout 60 minutes), 741
(97%) successfully terminated. Out of the possible 256 modules (16 modules,
16 ontology-reasoner pairs) across the entire set, we obtain 251 records from
the intra-module analysis, 242 out of which were obtained from three dis-
tinct measurements, 6 are comprised of two distinct measurements and 3 by
only one. Since we are interested in observing variability, we discard the latter 3
and stick with 248 partially or fully complete records. Variability is determined
using the coefficient of variation (COV). From the module perspective, we look
at three distinct sources of variation: overall classification time OCT, sum of
all subsumption test times (SUMST) and the total number of tests conducted
(CTT). Across modules, only 1 module OCT varies by more than 30%, 10 by
more than 20% and 17 by more than 10%. The module with the worst variation
corresponds to a module taken from a 3/16th of the CAO ontology, classified by
Pellet (min=104.25 sec, max=215.08 sec). A more detailed picture of the overall
variation can be taken from Figure 5. In terms of test count, the variation is
surprisingly large. 184 out of 248 cases (75%) show differences in the number of
test measured across runs. Only 63 (25%) do not vary at all. 16 modules vary
by as much as 20% in the number of subsumption tests.

Fact++[EXP] HermiT[EXP] JFact[EXP] Pellet[EXP]
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Fig. 5. Histogram of variation (COV) by reasoner. Top: OCT, bottom: SUMST

Across all 251 modules, we measured the hardness of 204,286 distinct sub-
sumption tests. Only 92% of the tests are measured more than once and we dis-
card the rest. As can be seen in Figure 6, the coefficient of variation is generally
log10-normally distributed (here reported in percent rather than in proportions
of 1), but varies considerably across reasoners. On average measurements devi-
ate as much as 13.22% for Pellet, while measurements for HermiT and JFact
deviate 8.90% and 8.00% respectively, and FaCT++ only 2.33%. The maximum
variation for any test measurement for Pellet is 172.65%, for HermiT 170%, for
FaCT++ 154% and for JFact 32%.

For the inter-module analysis, we sampled 10 sub-module super-module
pairs from P from the 120 possible combinations as described in Section 5.2. For
result stability, we excluded 2 from the resulting 160 pairs that had only a single
measurement for either the sub or the super-module, and continued with 158.
Figure 7 shows the overall changes in measurement times across pairs by rea-
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Fig. 6. Histogram of variation (COV) of subsumption test measurements by reasoner.
Mind the log scale.

soner. Bin membership is determined as follows. Given a pair <M1,M2> ∈ P
we look at the change from either the CT (M1) to CT (M2) (module perspective)
or the change from a subsumption test STM1

to STM2
(subsumption test per-

spective). Every pair of measurements has a tendency, a magnitude and a degree
of stability. The tendency easier (mean hardness change less than 5%) denotes
that a test is easier in the super-module (potentially pathological), harder (mean
hardness change more than 5%) the reverse, and neutral means the mean mea-
surement difference does not change by more than 5%. High magnitudes are
changes above 50%, medium above 5% and low below. A stable effect can be
clear cut, high or low 4. Neutral cases have high stability if both sets of measure-
ments have a variation coefficient less than 5%. From the module perspective,
the main observation to be made here is that there are 8 cases in the set where
the sub-module is harder than the super-module and 38 where there is no sig-
nificant change in hardness (less than 5% change). Test time stability varies
a lot across reasoners. While FaCT++ measurements are mostly stable, Pellet
measurements vary a lot across almost all potential categories. The pathological
cases as described in section 4, EHC and EHH, occur rarely. Out of the 39,894
tests that got easier overall, only 5,620 are of a high magnitude. Out of those,
3,322 are clear cut, and 1,106 of high stability. From the clear cut cases, only
24 are harder than 100 ms, and only 2 are harder than a second. From the
highly stable cases, 40 are harder than 100 ms and none harder than a second.
Out of the 3,322 clear cut cases, only 116 are potentially not affected by non-
deterministic behaviour of the algorithms (none of the high stability cases), and
the hardest one is just about 22 ms.

7 Discussion

We quantify the impact of subsumption test hardness (RQ1) on classification
time in two ways: (1) Contribution of test times measured to OCT and (2) ratio
of number of ontologies with tests to those without. In Figure 4 we can see
that only few of the 136 ontologies with tests were dominated by test hardness:
Only 1 ontology had more than a 50% contribution of total SST for Hermit,
7 for Pellet, 19 for FaCT++ and 23 for JFact. However, there are cases where
the contribution is very high. The ratio of ontologies entirely without tests is
very high: FaCT++: 52%-71%, HermiT 55%-80%, JFact in 56%-76% and Pellet
64%-84%. We have established only the lower bound. The upper bound covers
the very unlikely possibility that the failed classifications might be all without
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Fig. 7. Hardness classes by reasoner. Top row: OCT, bottom 4: SST. Bin labels x-axis:
1st letter: tendency (easier, neutral, harder), 2nd: magnitude (low, medium, high), 3rd:
stability: (clearcut, high, low). Y-axis: number of comparisons.

tests. Additionally, 36 of the ontologies entirely without tests have less than 100
TBox axioms (12 less than 10).

RQ2 is quantified by ratio of positive to negative tests. Positive tests account
to between 0.12% (Pellet) and 2.61% (FaCT++) of the overall number of tests
(JFact 2.49%, HermiT 2.12%). This low ratio is not surprising, given that the
worst case N2 is dominated by far by non-subsumptions. As a side observation,
current traversal algorithms appear highly efficient. Only 3 ontology-reasoner
pairs (two distinct ontologies, small TBoxes) trigger more than 10% of the worst
case N2 number of subsumption tests, and 50 pairs (30 unique ontologies) trigger
more than 1% of the worst case. This result however is only indicative of the
efficiency, as we do not guarantee to measure all tests.

The distribution of test hardness as shown in Figures 2 tends towards easy
tests (RQ3). Table 6.1 and Figure 2 show that the number of really hard tests
are in the minority: only 346 out of 2,671,896 tests measured overall are harder
than a second. This result may emphasise the importance of test avoidance over
further optimising individual subsumption tests. However, as there individual
tests that can make up to 25% of the overall reasoning time (Fig. 4), it cannot
be disregarded. Figure 3 provides a view from the level of the ontology. Again,
we have only 11 ontology-reasoner pairs (10 unique ontologies) that trigger tests
that are harder than 1 second during classification. While this is not indicative
of the overall impact of hardness that could be also due to a large amount of
easier tests, it can provide reasoner developers with hard cases to study, but
also, again, might invite shifting the emphasis on test avoidance.

The experiment discussed in the next section has not been designed as a
comparative study between the reasoners. The distinction by reasoner in the
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presentation of the data is purely informative, as the data was gathered mostly
for different ontologies and in different quantity. The variation of the measure-
ments, both for individual tests and overall times, is, at least in its magnitude,
surprising (RQ4). While the variation of test times could be so high merely due
to the low number of measurements that are very vulnerable to experimental
error (for example an unaccounted for system background kicking in, stochastic-
ity in the garbage collection, room temperature), we cannot claim the same for
the variation in the numbers of triggered tests. That 75% of the modules in the
sample vary in the number of tests is a very strong indicator for the stochastic-
ity of the classification process (at least in this particular sample), be it due to
random effects in the programming language or deliberate randomness induced
by the implementation. This poses a serious threat for single-run benchmarking,
as it is still general practice in the DL community. A small indication of the po-
tential impact of a particular programming environment is the very low average
variation in test times collected for FaCT++, which is the only reasoner in the
set implemented in C++. In the inter-module comparison we learned that our
pathological cases rarely happen and if so, the effect they might have on overall
classification time is negligible, due to the potential degree of the effect and the
rarity in which they occur. Furthermore, the strong evidence of stochasticity of
the classification process makes it unclear whether the effect might not simply
be due to non-determinism. Despite having detected some cases that are clearly
counter-intuitive (in the sense of getting easier when irrelevant stuff is added in),
we cannot be sure whether modularity is the cause, due of the small effect size
(RQ6). On top of that, easier and harder tests almost balance each other out.
Given our sample bias, our results are not conclusive.

8 Conclusions and Future Work

In this paper we have presented a procedure for reliable and reproducible isola-
tion of counter-intuitive reasoning behaviour on subsumption tests during clas-
sification and presented some such isolated cases. Future work includes com-
pleting the full characterisation of the corpus with respect to the pathological
cases and then investigating the causal basis of those cases. The most likely ex-
planation is that the additional axioms trigger a cheaper choice in the complex
non-determinism algorithms. The big challenge is whether any progress can be
made in a fairly reasoner independent way. One idea is to extract the justifica-
tions for a given entailment and see whether they are disproportionally difficult
individually. This would suggest that the additional information is directing the
algorithm toward “easier” reasoners. Another common problem of OWL reasoner
benchmarking that also might have a large effect of subsumption test hardness is
correctness. We are thinking about possibilities to improve the current standard
(majority voting) by using a justification based approach.
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